skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yoon, Peter H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The magnetospheres of the Earth and other magnetized planets are replete with high‐frequency fluctuations, which are sometimes accompanied by multiple‐harmonic electron cyclotron waves, and lower frequency waves of the whistler‐mode type. Such waves are presumed to be excited by energetic electrons trapped in the dipolar magnetic field, the so‐called loss‐cone electrons, the electron ring distribution being a highly idealized example. The present paper investigates the stability of electron ring distribution with respect to the excitation of quasi‐electrostatic upper‐hybrid wave instability as well as the quasi‐electromagnetic whistler mode instability that operates near electron cyclotron frequency. By employing a two‐dimensional particle‐in‐cell numerical simulation, it is demonstrated that the relatively early dynamics is dominated by the upper‐hybrid wave instability, but over a longer time period it is the whistler mode instability that ultimately determines the final relaxed state. The simulation results are interpreted with the quasilinear theoretical framework. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract The present study provides an evidence for the generation of harmonics of magnetosonic waves in the Martian magnetosheath region. The wave signatures are manifested in the magnetic field measurements recorded by the fluxgate magnetometer instrument onboard the Mars Atmosphere and Volatile Evolution missioN (MAVEN) spacecraft in the dawn sector around 5–10 LT at an altitude of 4,000–6,000 kms. The wave that is observed continuously from 19.1 to 20.7 UT below the proton cyclotron frequency (fci ≈ 46 mHz) is identified as fundamental mode of the magnetosonic wave. Whereas harmonics of the magnetosonic wave are observed during 19.7–20.3 UT at frequencies that are multiple offci. The ambient solar wind proton density and plasma flow velocity are found to vary with a fundamental mode frequency of 46 mHz. It is noticed that the fundamental mode is mainly associated with the left‐hand (LH), and higher frequency harmonics are associated with the right‐hand (RH) circular polarizations. A clear difference in the polarization and ellipticity is noticed during the time of occurrence of harmonics. The magnetosonic wave harmonics are found to propagate in the quasi‐perpendicular directions to the ambient magnetic field. The results of linear theory and Particle‐In‐Cell simulation performed here are in agreement with the observations. The present study provides a conclusive evidence for the occurrence of harmonics of magnetosonic wave in the close vicinity of the magnetosheath region of the unmagnetized planet Mars. 
    more » « less
  3. The quiet-time solar wind electrons feature non-thermal characteristics when viewed from the perspective of their velocity distribution functions. They typically have an appearance of being composed of a denser thermal “core” population plus a tenuous energetic “halo” population. At first, such a feature was empirically fitted with the kappa velocity space distribution function, but ever since the ground-breaking work by Tsallis, the space physics community has embraced the potential implication of the kappa distribution as reflecting the non-extensive nature of the space plasma. From the viewpoint of microscopic plasma theory, the formation of the non-thermal electron velocity distribution function can be interpreted in terms of the plasma being in a state of turbulent quasi-equilibrium. Such a finding brings forth the possible existence of a profound inter-relationship between the non-extensive statistical state and the turbulent quasi-equilibrium state. The present paper further develops the idea of solar wind electrons being in the turbulent equilibrium, but, unlike the previous model, which involves the electrostatic turbulence near the plasma oscillation frequency (i.e., Langmuir turbulence), the present paper considers the impact of transverse electromagnetic turbulence, particularly, the turbulence in the whistler-mode frequency range. It is found that the coupling of spontaneously emitted thermal fluctuations and the background turbulence leads to the formation of a non-thermal electron velocity distribution function of the type observed in the solar wind during quiet times. This demonstrates that the whistler-range turbulence represents an alternative mechanism for producing the kappa-like non-thermal distribution, especially close to the Sun and in the near-Earth space environment. 
    more » « less
  4. Various high-frequency waves in the vicinity of upper-hybrid and Langmuir frequencies are commonly observed in different space plasma environments. Such waves and fluctuations have been reported in the magnetosphere of the Earth, a planet with an intrinsic strong magnetic field. Mars has no intrinsic magnetic field and, instead, it possesses a weak induced magnetosphere, which is highly dynamic due to direct exposure to the solar wind. In the present paper, we investigate the presence of high-frequency plasma waves in the Martian plasma environment by making use of the high-resolution electric field data from the Mars Atmosphere and Volatile Evolution missioN (MAVEN) spacecraft. Aims. This study aims to provide conclusive observational evidence of the occurrence of high-frequency plasma waves around the electron plasma frequency in the Martian magnetosphere. We observe two distinct wave modes with frequency below and above the electron plasma frequency. The characteristics of these high-frequency waves are quantified and presented here. We discuss the generation of possible wave modes by taking into account the ambient plasma parameters in the region of observation. Methods. We have made use of the medium frequency (100 Hz–32 kHz) burst mode-calibrated electric field data from the Langmuir Probe and Waves instrument on board NASA’s MAVEN mission. Due to the weak magnetic field strength, the electron gyro-frequency is much lower than the electron plasma frequency, which implies that the upper-hybrid and Langmuir waves have comparable frequencies. A total of 19 wave events with wave activities around electron plasma frequency were identified by examining high-resolution spectrograms of the electric field. Results. These waves were observed around 5 LT when MAVEN crossed the magnetopause boundary and entered the magnetosheath region. These waves are either a broadband- or narrowband-type with distinguishable features in the frequency domain. The narrowband-type waves have spectral peak above the electron plasma frequency. However, in the case of broadband-type waves, the spectral peak always occurred below the electron plasma frequency. The broadband waves consistently show a periodic modulation of 8–14 ms. Conclusions. The high-frequency narrowband-type waves observed above the electron plasma frequency are believed to be associated with upper-hybrid or Langmuir waves. However, the physical mechanism responsible for the generation of broadband-type waves and the associated 8–14 ms modulation remain unexplained and further investigation is required. 
    more » « less
  5. Quasi electrostatic fluctuations in the upper-hybrid frequency range are commonly detected in the planetary magnetospheric environment. The origin of such phenomena may relate to the instability driven by a loss-cone feature associated with the electrons populating the dipole-like magnetic field. The present paper carries out a one-dimensional electrostatic particle-in-cell simulation accompanied by a reduced quasilinear kinetic theoretical analysis to investigate the dynamics of the upper-hybrid mode instability driven by an initial ring electron distribution function, which is a form of loss-cone distribution. A favorable comparison is found between the two approaches, which shows that the reduced quasilinear theory, which is grounded in the concept of a model of the particle distribution function that is assumed to maintain a fixed mathematical form except that the macroscopic parameters that define the distribution are allowed to evolve in time, can be an effective tool in the study of plasma instabilities, especially if it is guided by and validated against the more rigorous simulation result. 
    more » « less
  6. A set of self-consistent equations of weak turbulence theory that describe the time evolution of the electron velocity distribution and of the spectra of Langmuir and ion sound waves is solved numerically, considering the presence of a core electron population and a ring-beam electron distribution. The results obtained show that the finite pitch angle of the beam relative to the direction of the ambient magnetic field leads to a spectrum of Langmuir waves which is more complex than the spectrum obtained in the case of beams with zero pitch angle, to an enlarged plateau in the beam region of the electron velocity distribution and to the generation of a prominent high-velocity population in the electron velocity distribution. 
    more » « less
  7. In a recent paper [P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021)], the weak turbulence theory for incompressible magnetohydrodynamics is formulated by employing the method customarily applied in the context of kinetic weak plasma turbulence theory. Such an approach simplified certain mathematical procedures including achieving the closure relationship. The formulation in the above-cited paper starts from the equations of incompressible magnetohydrodynamic (MHD) theory expressed via Elsasser variables. The derivation of nonlinear wave kinetic equation therein is obtained via a truncated solution at the second-order of iteration following the standard practice. In the present paper, the weak MHD turbulence theory is alternatively formulated by employing the pristine form of incompressible MHD equation rather than that expressed in terms of Elsasser fields. The perturbative expansion of the nonlinear momentum equation is carried out up to the third-order iteration rather than imposing the truncation at the second order. It is found that while the resulting wave kinetic equation is identical to that obtained in the previous paper cited above, the third-order nonlinear correction plays an essential role for properly calculating derived quantities such as the total and residual energies. 
    more » « less
  8. Abstract Weakly turbulent processes that take place in plasmas are customarily formulated in terms of kinetic theory. However, owing to an inherent complexity associated with the problem, thus far the theory is fully developed largely for unmagnetized plasmas. In the present paper it is shown that a warm two fluid theory can successfully be employed in order to partially formulate the weak turbulence theory in spatially uniform plasma. Specifically, it is shown that the nonlinear wave-wave interaction, or decay processes, can be reproduced by the two-fluid formalism. The present finding shows that the same approach can in principle be extended to magnetized plasmas, which is a subject of future work. 
    more » « less
  9. Ion holes refer to the phase-space structures where the trapped ion density is lower at the center than at the rim. These structures are commonly observed in collisionless plasmas, such as the Earth’s magnetosphere. This paper investigates the role of multiple parameters in the generation and structure of ion holes. We find that the ion-to-electron temperature ratio and the background plasma distribution function of the species play a pivotal role in determining the physical plausibility of ion holes. It is found that the range of width and amplitude that defines the existence of ion holes splits into two separate domains as the ion temperature exceeds that of the electrons. Additionally, the present study reveals that the ion holes formed in a plasma with ion temperature higher than that of the electrons have a hump at its center. 
    more » « less